tf.keras.metrics.CosineSimilarity

View source

Class CosineSimilarity

免费成长做爱直播有哪些Computes the cosine similarity between the labels and predictions.

Aliases:

  • Class tf.compat.v1.keras.metrics.CosineSimilarity
  • Class tf.compat.v2.keras.metrics.CosineSimilarity
  • Class tf.compat.v2.metrics.CosineSimilarity
  • Class tf.metrics.CosineSimilarity

cosine similarity = (a . b) / ||a|| ||b||

For example, if y_true is [0, 1, 1], and y_pred免费成长做爱直播有哪些 is [1, 0, 1], the cosine similarity is 0.5.

This metric keeps the average cosine similarity between predictions and labels over a stream of data.

Usage:

m = tf.keras.metrics.CosineSimilarity(axis=1)
m.update_state([[0., 1.], [1., 1.]], [[1., 0.], [1., 1.]])
# l2_norm(y_true) = [[0., 1.], [1./1.414], 1./1.414]]]
# l2_norm(y_pred) = [[1., 0.], [1./1.414], 1./1.414]]]
# l2_norm(y_true) . l2_norm(y_pred) = [[0., 0.], [0.5, 0.5]]
# result = mean(sum(l2_norm(y_true) . l2_norm(y_pred), axis=1))
       = ((0. + 0.) +  (0.5 + 0.5)) / 2

print('Final result: ', m.result().numpy())  # Final result: 0.5

Usage with tf.keras API:

model = tf.keras.Model(inputs, outputs)
model.compile(
    'sgd',
    loss='mse',
    metrics=[tf.keras.metrics.CosineSimilarity(axis=1)])

__init__

View source

__init__(
    name='cosine_similarity',
    dtype=None,
    axis=-1
)

Creates a CosineSimilarity instance.

Args:

  • name: (Optional) string name of the metric instance.
  • dtype: (Optional) data type of the metric result.
  • axis: (Optional) Defaults to -1. The dimension along which the cosine similarity is computed.

Methods

reset_states

View source

reset_states()

Resets all of the metric state variables.

This function is called between epochs/steps, when a metric is evaluated during training.

result

View source

result()

Computes and returns the metric value tensor.

免费成长做爱直播有哪些Result computation is an idempotent operation that simply calculates the metric value using the state variables.

update_state

View source

update_state(
    y_true,
    y_pred,
    sample_weight=None
)

免费成长做爱直播有哪些Accumulates metric statistics.

y_true and y_pred should have the same shape.

Args:

  • y_true: The ground truth values.
  • y_pred: The predicted values.
  • sample_weight: Optional weighting of each example. Defaults to 1. Can be a Tensor whose rank is either 0, or the same rank as y_true, and must be broadcastable to y_true.

Returns:

Update op.

results matching ""

    No results matching ""